

DAY6 – MACHINE LEARNING ALGORITHMS CHEAT SHEET

Al Advent Calendar 2024
Al Transformers

SUPERVISED MODELS

	Algorithm		Description	Applications	Advantages	Disadvantages	
.0	Linear Regression		Models a linear relationship between inputs and a continuous numerical output variable.	Stock Price PredictionHousing Price PredictionCustomer Lifetime Value Prediction	- Simple and fast to train - Interpretable results through output coefficients - Explainable method	Assumes linearity Sensitive to outliers May underfit small, high-dimensional data	
	Logistic Regression		Models a linear relationship between inputs and a categorical output (e.g., 1 or 0).	- Predicting Credit Risk Score - Customer Churn Prediction - Multi-class Predictions	- Interpretable and explainable - Regularization reduces overfitting - Handles multi-class predictions	Assumes linearity Can overfit with small, high-dimensional data	
Regression And Classification Models	Decision	Dente de la constant	Models decisions based on feature rules; used for classification or regression.	- Customer Churn Prediction - Credit Score Modeling - Disease Prediction	- Explainable and interpretable - Handles missing values	- Prone to overfitting - Sensitive to outliers	
	Random Forest	Constant test Co	Combines outputs of multiple decision trees for better accuracy.	- Credit Score Modeling - Predicting Housing Prices	- Reduces overfitting - Higher accuracy than single models	- High training complexity - Less interpretable than single decision trees	
	Gradient Boosting Regression	Page and pag	Boosts weak models to form a strong predictive ensemble.	- Predicting Car Emissions - Ride-Hailing Fare Prediction	- Better accuracy than basic regression - Handles multicollinearity and non-linear relationships	- Sensitive to outliers - Computationally expensive	
	XGBoost		Efficient and flexible gradient boosting algorithm for classification or regression.	- Churn Prediction - Insurance Claims Processing	- Highly accurate - Captures complex non-linear relationships	- Hyperparameter tuning is complex - Poor performance on sparse datasets	
ati	SVM (Support Vector Machine)	Margin (gap between decision bounday and hyperplanes) Support vectors Support vectors Hyperplane for fact class X ₁ Hyperplane for fact class	A classifier that uses a linear decision boundary but can handle non-linear classification using kernel tricks to map data into high-dimensional spaces.	Image ClassificationText CategorizationBioinformatics	Handles high-dimensional data wellWorks when variables > samplesFlexible kernel functions	 Sensitive to overfitting Requires careful kernel selection Computationally expensive Poor with noisy/overlapping data 	
	K Nearest Veighbours	Case II	Predicts a label based on the closest data points in a given space; ideal for non-parametric learning where decision boundaries are irregular.	Fraud DetectionRecommendation SystemsMedical Diagnosis	- Effective for irregular boundaries - No assumptions about data distribution	- Sensitive to noisy/missing data - Computationally expensive since it requires accessing all data points	

UNSUPERVISED MODELS

	Algorithm		Description	Applications	Advantages	Disadvantages				
Clustering Algorithms	K-Means		Determines K clusters based on Euclidean distances; widely used for clustering tasks.	- Customer Segmentation - Recommendation Systems	- Scales to large datasets - Simple to implement and interpret - Creates tight clusters	- Requires predefining the number of clusters - Struggles with varying cluster sizes/densities				
	Hierarchical Clustering		"Bottom-up" approach, merging closest data points iteratively into clusters.	- Fraud Detection - Document Clustering	- No need to predefine the number of clusters - Provides an informative dendrogram	- May not yield the best clustering - High complexity; unsuitable for large datasets				
Association Rule Mining: Apriori Algorithm	Apriori Algorithm		A rule-based approach that identifies the most frequent itemsets in a dataset using prior knowledge of frequent itemset properties.	- Product Placements- Recommendation Engines- Promotion Optimization	- Intuitive and interpretable results - Exhaustively finds all rules based on confidence and support	- Generates many uninteresting or overlapping itemsets - Computationally and memoryintensive				
Dimensionality Reduction	PCA (Principal mponent Analysis)		PCA reduces dimensionality by extracting key features while minimizing information loss, using linear functions.	Image CompressionNoise ReductionPreprocessing for Machine Learning Models	 Explainable & interpretable results Maps new data points into existing PCA space Helps reduce overfitting Removes correlated features 	- Sensitive to outliers - Requires data standardization				